Nanotechnology for Fuel Cells
There are noteworthy developments in nanotechnology and its relevance to the energy field. Fuel cells especially benefit from electrodes and membrane electrolytes with nanostructured and therefore enlarged surfaces. Fuel cells also derive benefits from the development of nanoparticles and nanotubes for catalytic application, allowing also study of the molecular electrochemical behaviour. In this chapter we describe the impact of nanotechnology in the performance of the different components of the fuel cell as well as the impact of nanotechnology in the electrochemistry process.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 93.08 Price includes VAT (France)
Softcover Book EUR 116.04 Price includes VAT (France)
Hardcover Book EUR 158.24 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Nanotechnology: Emerging Opportunities for Fuel Cell Applications
Chapter © 2019
Fuel cells: Materials needs and advances
Article Open access 26 April 2024
Current Progress of Carbon Nanotubes Applied to Proton Exchange Membrane Fuel Cells: A Comprehensive Review
Article 22 August 2023
References
- Nanoforum Energy Report, April 2004 (nanoforum.org) Google Scholar
- VDI-Nachrichten, 2002 (VDI-nachrichten.com) Google Scholar
- C.H. Steele, A. Heinzel, Nature 414, 2001, 345–352 ArticleCASGoogle Scholar
- Handbook of Fuel Cells, Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003 Google Scholar
- W. Grot, Chem. Ing. Tech. 47, 1975, MS 260/75 Google Scholar
- T.A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 140, 1993, 1041–1047 ArticleCASGoogle Scholar
- M.S. Wilson, J.A. Valerio, S. Gottesfeld, Electrochim. Acta 40(3), 1995, 355–363 ArticleCASGoogle Scholar
- E. Gülzow, T. Kaz, R. Reissner, H. Sandner, L. Schilling, M.v. Bradke, J. Power Sources 105, 2002, 261–266 ArticleGoogle Scholar
- Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 4, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 930, 947–948. Google Scholar
- A. Müller, Proc. of Third European Solid Oxide Fuel Cell Forum, P. Stevens, Ed., Lucerne, 1998, p. 353 Google Scholar
- D. Herbstsritt, Proc. Fourth European Solid Oxide Fuel Cell Forum, Lucerne 2000, p. 697; E. Ivers-Tiffée, A. Weber, D. Herbstritt, J. Eur. Ceram. Soc. 21, 2001, 1805 Google Scholar
- M.A. Laguna-Bercero, A. Larrea, R.I. Merino, J.I. Pena, V.M. Orera, J. Am. Ceram. Soc. 11, 2005, 3215 ArticleGoogle Scholar
- J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, In: S. Gottesfeld, G. Halpert, A. Landgrebe, Eds., Proc. First Int. Symp. on Proton Conducting Membrane Fuel Cells, The Electrochemical Society Proceedings, Advanced Composite Polymer Electrolyte Fuel Cell Membranes, Vol. 95–23, 1995, 193–201 Google Scholar
- B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, US patent 5,547,551, 1996 Google Scholar
- N. Nakao, M. Yoshitake In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 3, Part 1, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 412–419 Google Scholar
- Creavis Gesellschaft für Technologie und Innovation, WO 03/07543 (2008) Google Scholar
- R. Savinell, E. Yeager, D. Tryk, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 141(4), 1994, L46 ArticleCASGoogle Scholar
- L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B.C. Benicewicz, Chem. Mater., 17(21), 2005, 5328–5333; T. Schmidt, 208th Meeting of the Electrochemical Soc., MA 2005-02, October 16–21, 2005, Los Angeles, CA Google Scholar
- A.E. Steck, C. Stone In: New Materials for Fuel Cells and Modern Battery Systems II, O. Savadogo, Ed., Ecole Polytechnique, Montreal, 1997 Google Scholar
- F.N. Cornet, G. Geble, R. Mercier, M. Pineri, B. Silion, In: New Materials for Fuel Cells and Modern Battery Systems II, O. Savadogo, P.R. Roberge, Eds., Ecole Polytechnique Montreal, Montreal, 1997, p. 818 Google Scholar
- J.A. Kerres, J. Membr. Sci. 185, 2001, 3–27 ArticleCASGoogle Scholar
- K.D. Kreuer, J. Membr. Sci. 185, 2001, 29–39 ArticleCASGoogle Scholar
- B. Ruffmann, B. Rohland, Chem. Ing. Tech. 2005, 539–548 Google Scholar
- M. Yoshizawa, H. Ohno, Anhydrous proton transport system based on zwitterionic liquid and HTFSI, Chem. Commun., 2004, 1828 Google Scholar
- Md.A.B. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun. 2003, 938–939 Google Scholar
- M. Doyle, S.K. Choi, G. Proulx, High-temperature proton conducting membrane based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc. 147(1), 2000, 34 ArticleCASGoogle Scholar
- M.-A. Neouze, J. Le Bideau, F. Leroux, A. Vioux, A route to heat resistant solid membranes with performances of liquid electrolytes, Chem. Commun., 2005, 1082–1084 Google Scholar
- Z. Li, H. Liu, A. Liu, P. He, J. Li, A room-temperature ionic-liquid-templated proton-conducting gelationous electrolyte, J. Phys. Chem. B 2004, 108, 17512–17518 ArticleCASGoogle Scholar
- C.A. Angell, W. Xu, J.-P. Belieres, M. Yoshizawa, Ionic liquids and ionic liquids acids with high temperature stability for fuel cell and other high temperature applications, methods of making and cell employling same, US Patent WO2004114445, 2004 Google Scholar
- D.J. Jones, J. Rozie`re In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 3, Part 1, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 447–455 Google Scholar
- B. Bonnet, D.J. Jones, J. Rozie`re, L. Tichicaya, G. Alberti, M. Casciola, L. Masinelli, B. Bauer, A. Peraio, E. Ramunni, J. New Mater. Electrochem. Syst. 3, 2000, 87 CASGoogle Scholar
- F. Bauer, M. Willert-Porada, J. Power Sources 145, 2005, 101–107 ArticleCASGoogle Scholar
- G. Alberti, M. casciola, M. Pica, G. Di Cesare, Ann. N.Y. Acad. Sci 984, 2003, 208–225 ArticleCASGoogle Scholar
- I. Honma, Y. Takeda, J.M. Bae, Solid State Ionics 120, 1999, 255–264 ArticleCASGoogle Scholar
- Y.S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci. 212, 2003, 263 ArticleCASGoogle Scholar
- G. Alberti, M. Casciola, M. Pica, Guisi di Cesare, Ann. N Y Acad. Sci. 984, 2003, 2008 Google Scholar
- E. Peled, T. Duvdevani, A. Melman, Electrochem. Solid State Lett. 1(5), 1998, 210–211 ArticleCASGoogle Scholar
- E. Peled, V. Livshits, M. Rakhmann, A. Aharon, T. Duvdevani, M. Pholosoph, T. Feiglin, Electrochem. Solid State Lett. 7(12), 2004, 507–510 ArticleGoogle Scholar
- S. Liu, Q. Pu, L. Gao, C. Korzeniewsky, C. Matzke, Nano Lett. 5(7), 2005, 1389 ArticleCASGoogle Scholar
- C. Staudt-Bickel, Crosslinked Polymeric Membranes for the Separation of Gaseous and Liquid Mixtures, Soft Materials, Vol. 1, 3, 2003, 277 ArticleGoogle Scholar
- F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation, ChemPhysChem, 4(9), 2003, 967 ArticleGoogle Scholar
- J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, G. Zhao, Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation, Angew. Chem., 116, 2004, S1421–S1423 ArticleGoogle Scholar
- M. Doyle, S.K. Choi, G. Proulx, J. Electrochem Soc. 147, 2000, 34–37 ArticleCASGoogle Scholar
- Electrochemical Aspects of Ionic Liquids, H. Ohno, Ed., Wiley, 2005 Google Scholar
- M. Yoshizawa*, Wu. Xu, C.A. Angell, J. Am. Chem. Soc., 125, 2003, 13411–15419 Google Scholar
- A.P. Abbott,* G. Capper, D.L. Davies, R.K. Rasheed and V. Tambyrajah, Chem. Commun., 2003, 70–71 Google Scholar
- A.P. Abbott, G. Capper, D.L. Davies,* H.L. Munro, R.K. Rasheed and V. Tambyrajah, Chem. Commun., 2001, 2010–2011 Google Scholar
- T. Höfener, M. Solinas, W. Leitner, Hydrogen solubility in the system ionic liquid/CO2/H2, First Congress on Ionic Liquids, Salzburg, 2005 Google Scholar
- S.N.V.K. Aki, D.G. Hert, J.L. Anderson, J.F. Brennecke, Pure and mixed gas solubilities CO2/IL mixtures, First Congress on Ionic Liquids, Salzburg, 2005 Google Scholar
- J. Kerr, X.-G. Sun, G. Liu, J. Xie, C. Reeder, New polymeric proton conductors for high temperature applications, DOE Workshop, 2004 Google Scholar
- A.P. Abbott, ChemPhysChem 2004, 5, 1242 ArticleCASGoogle Scholar
- G. Tsagaropoulos, A. Eisenberg, Macromolecules, 28, 1995, 6067 ArticleCASGoogle Scholar
- G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Texeira, J. Dupont, On the use of imi-dazolium ionic liquids for the formation and stabilization of Ir(0) and Rh(0) nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem. Eur. J., 9 (14), 2003, 3263–3269 ArticleCASGoogle Scholar
- C.W. Scheeren, G. Machado, J. Dupont, P.F.P. Fichtner, S.R. Texeira, Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometal-lic precursor, characterization and catalytic properties in hydrogenation reactions, Inorg. Chem., 42(15), 2003, 4738–4742 ArticleCASGoogle Scholar
- M.A. Néouze, J. Le Bideau, A. Vioux, Versatile heat resistant solid electrolytes with performances of liquid electrolytes, Prog. Solid State Chem., 2–4, 2005, 217–222 ArticleGoogle Scholar
- P. Devlin, P. Devlin (US DoE), Collaborative Fuel Cell R&D, Second Implementation Liaison Committee Meeting, Gunzburg, Germany, March 1–3, 2004 Google Scholar
- D.D. Macdonald et al., Materials for high temperature PEM Fuel Cells, Workshop at Energy Institute, Pennsylvania State University, 2003 Google Scholar
- H.A. Gasteiger, M.F. Mathias, Materials for high temperature PEM Fuel Cells, Workshop at Energy Institute, Pennsylvania State University, 2003 Google Scholar
- T.L. Reitz, Project report AFLR-PR-WP-TR-2004–2130, US Air Force, November 2004 Google Scholar
- J.J. Xu, Project report 03-19, California Energy Commission, 2003 Google Scholar
- P. Bogdanoff, M. Hilgendorff, H. Schulenburg, M. Fieber-Erdmann, I. Dorbandt, H. Trib-utsch, S. Fiechter, In: Technical Session: Fuel Cell Systems of the World Renewable Energy Congress VII: Proceedings (7, 2002, Köln) D. Stolten [u.a.] Eds. Jülich: Forschungszentrum Jülich GmbH, 2003 (Schriften des Forschungszentrums Jülich – Reihe Energietechnik; 26), pp. 129–132 Google Scholar
- P. Stonehart, Ber. Bunsenges. Phys. Chem. 94, 1990, 913–921 ArticleCASGoogle Scholar
- M. Uchida, Y. Fukuoka, Y. Sudawara, N. Eda, A. Otah, A. Otah, J. Electrochem. Soc. 143, 1996, 245 Google Scholar
- DaimlerChrysler/Stäb/, Bönnemann MPI, Stolten FZJ, Wokaun, PSI, 3M. Umicore (USA, Japan? Fa. Tanaka Kikinzoku in Schweizer Arbeit und Grove) Google Scholar
- K.-Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem. 14, 2004, 505 (review) ArticleCASGoogle Scholar
- N. Fink, Untersuchung zur Kinetik der methanol-oxidation unter DMFC-Bedingungen, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2005 Google Scholar
- N. Fink, M. Lopez, U. König, GDCh Monographien 23, 2002, 367 Google Scholar
- E. Antolini, J. Mater. Sci. 38, 2003, 2995 ArticleCASGoogle Scholar
- J. Schoonman, Solid State Ionics 157, 2003, 319 ArticleCASGoogle Scholar
- U.A. Paulus, A. Wokaun, G.G. Scherrer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J. Phys. Chem. B, 106, 2002, 4181–4191 ArticleCASGoogle Scholar
- U. Stimming, H.F. Oetjen, V.M. Schmidt, F. Trila, J. Electrochem Soc. 143, 1996, 3838 ArticleGoogle Scholar
- T.A. Zawodzinski, C. Karuppaiah, F. Uribe, S. Gottesfeld, Proc. Electrochem. Soc. 97, 1997, 139 Google Scholar
- H. Bönnemann, R. Brinkmann, P. Britz, J. New Mater. Electrochem. Syst. 3, 2000, 199–206 Google Scholar
- A. Lee, K. Park, J. Choi, B. Kwon, Y. Sung, J. Electrochem. Soc. 149(10), 2002, A1299– A1304 ArticleCASGoogle Scholar
- M.L. Anderson, R.M. Stroud, D. Rolison, Nano Lett. 2(3), 2002, 235–240 ArticleCASGoogle Scholar
- K. Vinodgopal, M. Haria, D. Meisel, P. Kamat, Nano Lett. 4(3), 2004, 415–418 ArticleCASGoogle Scholar
- M. Chojak, M. Mascetti, R. Wlodarcyk, R. Marassi, K. Karnicka, K. Mieznikowski, P.J. Kulesza, J. Solid State Electrochem. 8, 2004, 854–860 ArticleCASGoogle Scholar
- H.R. Kunz, G.A. Gruver, J. Electrochem. Soc. 122, 1975, 1279 ArticleCASGoogle Scholar
- M.T. Reetz, Chimia 58, 2004, 896 ArticleCASGoogle Scholar
- V. Rao, P.A. Simonov, E.R. Savinova, G.V. Plaksin, S.V. Cherpanova, G.N. Kryukova, U. Stimming, J. Power Sources 145, 2005, 178–187 ArticleCASGoogle Scholar
- P. Kim, H. Kim, J.B. Joo, W. Kim, I.K. Song, J. Yi, J. Power Sources 145, 2005, 139–146 ArticleCASGoogle Scholar
- M.K. Debe, Handbook of Fuel Cells — Fundamentals and Applications, Vol. 3: Fuel Cell Technology and Applications, W. Vielstich, H.A. Gasteiger, A. Lamm, Ed., 2003, Wiley, pp. 576–589 Google Scholar
- J.-H. Choi, K.-W. Park, H.-K. Lee, Y.-M. Kim, J.-S. Lee, Y.-E. Sung, Electrochim. Acta 48, 2003, 2781 ArticleCASGoogle Scholar
- Quintus, M, Composite Electrodes and Membranes for Polymer Electrolyte Membrane Fuel Cells, PhD Thesis, University of Stuttgart, 2002, urn:nbn:de:bsz:93-opus-12074 Google Scholar
- A. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 1997, 377 ArticleCASGoogle Scholar
- A. Chambers, C. Park, R.T.K. Baker, N.M. Rodriguez, J. Phys. Chem 102, 1998, 4253 CASGoogle Scholar
- P. Chen, X. Wu, J. Lin, K.L. Tan, Science 285, 1999, 91 ArticleCASGoogle Scholar
- K.P. de Jong, J.W. Geus, Catal. Rev. Sci. Eng. 42, 2000, 481 ArticleGoogle Scholar
- A.C. Dillon, M.J. Heben, Appl. Phys. A 72, 2001, 133 ArticleCASGoogle Scholar
- Z. Dehouche, L. Lafi, N. Grimard, J. Goyette, R. Chahine, Nanotechnology 16, 2005, 402 ArticleCASGoogle Scholar
- W.B. Kim, T. Voitl, G.J. Rodriguez-Rivera, J.A. Dumesic, Science 305, 2004, 1280 ArticleCASGoogle Scholar
- M. Valden, X. Lai, D.W. Goodman, Science 281, 1998, 1647 ArticleCASGoogle Scholar
- M.-S. Löffler, B. Groß, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Phys. Chem. Chem. Phys. 3, 2001, 333 ArticleGoogle Scholar
- M.-S. Löffler, B. Groß, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Scripta Mater., 44, 2001, 2253 ArticleGoogle Scholar
- M.-S. Löffler, H. Natter, R. Hempelmann, K. Wippermann, Electrochim. Acta 48, 2003, 3047 ArticleGoogle Scholar
- M. Uchida, Y. Fukuoka, Y. Suawara, H. Ohara, A. Ohta, J. Electrochem. Soc. 145(11), 1998, 3708–3713 ArticleCASGoogle Scholar
- A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: a review, Int. J. Hydrogen Energy 30, 2005, 1297 ArticleCASGoogle Scholar
- R. Mallant, F. Koene, C. Verhoeve, A. Ruiter, Proc. Fuel Cell Seminar, 1994 Google Scholar
- O. Rau, Dissertation, University Duisburg, Duisburg, Germany, 1999 Google Scholar
- D. Repenning, R. Späh, W. Kaiser, J. Wind, WO01/78175 Google Scholar
- J. Wind, A. LaCroix, S. Braeuininger, P. Hedrich, C. Heller, M. Schudy In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 294–307 Google Scholar
- A. Heinzel, F. Mahlendorf, O. Niemzig, C. Kreuz, J. Power Sources 131, 2004, 35–40 ArticleCASGoogle Scholar
- T. Derieth, G. Bandlamundi, P. Beckhaus, A. Heinzel, C. Kreuz, F. Mahlendorf, J. New Mater. Electrochem. Syst., 2008, 21–29 Google Scholar
- R. Carlin, K. Swider-Lyons, The AMPTIAC Newsletter, 6(1), Spring 2002 Google Scholar
- K.E. Swider-Lyons, K.M. Bussmann, D.L. Griscom, C.T. Love, D.R. Rolison, W. Dmowski, T. Egami, In: Solid State Ionic Devices II — Ceramic Sensors, E.D. Wachsman, et al., Eds., Electrochemical Society Proceedings 2000-32, 2000, 48 Google Scholar
- Bernhard Heinrich ANDREAUS, Die Polymer — Elektrolyt Brennstoffzelle — Charakter-isierung ausgewählter Phänomene durch elektrochemische Impedanzspektroskopie, PhD-Thesis, Ecole Polytechnique Fédéral Lausanne, 2002 Google Scholar
- U. König, B. Davepon, Microstructure of polycrystalline Ti and its microelectrochemical properties by means of electron-backscattering-diffraction, Electrochim. Acta 47, 2001, 149 ArticleGoogle Scholar
- B. Davepon, J.W. Schultze, U. König, C. Rosenkranz, Crystallographic orientation of single grains of polycristalline Ti and their influence on electrochemical processes, Surf. Coat. Technol. 169–170, 2003, 85 ArticleGoogle Scholar
- C. Fricke, U. König, J.W. Schultze, Untersuchung instationärer Prozesse der O2-Reduktion an Platin, GDCh-Monographie 12, 1997, 163 Google Scholar
- A.A. El-Shafei, R. Hoyer, L.A. Kibler, D.M. Kolb, Methanol oxidation on Ru-modified preferentially oriented Pt electrodes in acidic medium, J. Electrochem. Soc. 151(6), 2004, F141 ArticleCASGoogle Scholar
- P.N. Ross, Jr., Oxygen reduction reaction on smooth single crystal electrodes, In: Handbook of Fuel Cells — Fundamentals, Technology and Applications, Vol. 2, Part 5 (The Oxygen Reduction/Evolution Reaction), W. Vielstich, A. Lamm, and H.A. Gasteiger, Eds., Chichester, UK, Wiley, 2003, pp. 465–480 Google Scholar
- T. Hamelmann, A. Moehring, M. Pilaski, M.M. Lohrengel, Impedance spectroscopy, in micro systems. In: P.L Bonora, Ed., Fifth Int. Symp. on Electrochem. Impedance Spectroscopy, Marilleva, Italy, 2001, pp. 55–56 Google Scholar
- K. Eckhard, O. Schlüter, V. Hagen, B. Wehner, T. Erichsen, W. Schuhmann and M. Muhler, Appl. Catal. A: Gen. Catal., 281, 2005, 115–120 ArticleCASGoogle Scholar
- C. Liang, W. Xia, H. Soltani-Ahmadi, O. Schlüter, R.A. Fischer and M. Muhler, Chem. Commun., 2005, 282–284 Google Scholar
- D. Kramer, E. Lehmann, G. Frei, P. Vontobel, A. Wokaun, G.G. Scherer, Nuclear Instrum. Methods Phys. Res. A 542, 2005, 52–60 ArticleCASGoogle Scholar
- N. Kardjilov, S.W. Lee, E. Lehmann, I.C. Lim, C.M. Sim, P. Vontobel, Nuclear Instrum. Methods Phys. Res. A 542, 2005, 100–105 ArticleCASGoogle Scholar
- A. Panchenko, H. Dilger, E. Möller, T. Sixt, and E. Roduner, J. Power Sources, 127, 2004, 325–330 ArticleCASGoogle Scholar
- A.E. Curtright, P.J. Bouwman, R.C. Wartena, K.E. Swider-Lyons, Power sources for nan-otechnology, Int. J. Nanotechnol., 1(1–2), 2004 Google Scholar
- S. Won Cha, R. O'Hayre, F.B. Prinz, Solid State Ionics 175, 2004, 789–795 ArticleGoogle Scholar
- S.J. Lee*, A. Chang-Chien, S.W. Cha, R. O'Hayre, Y.I. Park, Y. Saito, F.B. Prinz, J. Power Sources 112, 2002, 410–418 ArticleCASGoogle Scholar
- J.D. Holladay, E.O. Jones, M. Phelps, J. Hu, J. Power Sources 108, 2002, 21–27 ArticleCASGoogle Scholar
- P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Science 285, 1999, 83 ArticleCASGoogle Scholar
- E.R. Choban, J.S. Spendelow, L. Gancs, A. Wieckowski, P.J.A. Kenis, Electrochim. Acta 50(27), 2005, 5390 ArticleCASGoogle Scholar
- N. Mano, F. Mao, A. Heller, A miniature biofuel cell operating in a physiological buffer, J. Am. Chem. Soc. 124(44), 2002, 12962 ArticleCASGoogle Scholar
Author information
Authors and Affiliations
- Fachgebiet Energietechnik, Universität Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany Angelika Heinzel
- Centre for Fuel cell Technology (ZBT gGmbH), Carl-Benz-Str. 201, Duisburg, 47057, Germany Uwe König
- Angelika Heinzel