Nanotechnology for Fuel Cells

There are noteworthy developments in nanotechnology and its relevance to the energy field. Fuel cells especially benefit from electrodes and membrane electrolytes with nanostructured and therefore enlarged surfaces. Fuel cells also derive benefits from the development of nanoparticles and nanotubes for catalytic application, allowing also study of the molecular electrochemical behaviour. In this chapter we describe the impact of nanotechnology in the performance of the different components of the fuel cell as well as the impact of nanotechnology in the electrochemistry process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 93.08 Price includes VAT (France)

Softcover Book EUR 116.04 Price includes VAT (France)

Hardcover Book EUR 158.24 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Nanotechnology: Emerging Opportunities for Fuel Cell Applications

Chapter © 2019

Fuel cells: Materials needs and advances

Article Open access 26 April 2024

Current Progress of Carbon Nanotubes Applied to Proton Exchange Membrane Fuel Cells: A Comprehensive Review

Article 22 August 2023

References

  1. Nanoforum Energy Report, April 2004 (nanoforum.org) Google Scholar
  2. VDI-Nachrichten, 2002 (VDI-nachrichten.com) Google Scholar
  3. C.H. Steele, A. Heinzel, Nature 414, 2001, 345–352 ArticleCASGoogle Scholar
  4. Handbook of Fuel Cells, Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003 Google Scholar
  5. W. Grot, Chem. Ing. Tech. 47, 1975, MS 260/75 Google Scholar
  6. T.A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 140, 1993, 1041–1047 ArticleCASGoogle Scholar
  7. M.S. Wilson, J.A. Valerio, S. Gottesfeld, Electrochim. Acta 40(3), 1995, 355–363 ArticleCASGoogle Scholar
  8. E. Gülzow, T. Kaz, R. Reissner, H. Sandner, L. Schilling, M.v. Bradke, J. Power Sources 105, 2002, 261–266 ArticleGoogle Scholar
  9. Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 4, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 930, 947–948. Google Scholar
  10. A. Müller, Proc. of Third European Solid Oxide Fuel Cell Forum, P. Stevens, Ed., Lucerne, 1998, p. 353 Google Scholar
  11. D. Herbstsritt, Proc. Fourth European Solid Oxide Fuel Cell Forum, Lucerne 2000, p. 697; E. Ivers-Tiffée, A. Weber, D. Herbstritt, J. Eur. Ceram. Soc. 21, 2001, 1805 Google Scholar
  12. M.A. Laguna-Bercero, A. Larrea, R.I. Merino, J.I. Pena, V.M. Orera, J. Am. Ceram. Soc. 11, 2005, 3215 ArticleGoogle Scholar
  13. J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, In: S. Gottesfeld, G. Halpert, A. Landgrebe, Eds., Proc. First Int. Symp. on Proton Conducting Membrane Fuel Cells, The Electrochemical Society Proceedings, Advanced Composite Polymer Electrolyte Fuel Cell Membranes, Vol. 95–23, 1995, 193–201 Google Scholar
  14. B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, US patent 5,547,551, 1996 Google Scholar
  15. N. Nakao, M. Yoshitake In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 3, Part 1, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 412–419 Google Scholar
  16. Creavis Gesellschaft für Technologie und Innovation, WO 03/07543 (2008) Google Scholar
  17. R. Savinell, E. Yeager, D. Tryk, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 141(4), 1994, L46 ArticleCASGoogle Scholar
  18. L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B.C. Benicewicz, Chem. Mater., 17(21), 2005, 5328–5333; T. Schmidt, 208th Meeting of the Electrochemical Soc., MA 2005-02, October 16–21, 2005, Los Angeles, CA Google Scholar
  19. A.E. Steck, C. Stone In: New Materials for Fuel Cells and Modern Battery Systems II, O. Savadogo, Ed., Ecole Polytechnique, Montreal, 1997 Google Scholar
  20. F.N. Cornet, G. Geble, R. Mercier, M. Pineri, B. Silion, In: New Materials for Fuel Cells and Modern Battery Systems II, O. Savadogo, P.R. Roberge, Eds., Ecole Polytechnique Montreal, Montreal, 1997, p. 818 Google Scholar
  21. J.A. Kerres, J. Membr. Sci. 185, 2001, 3–27 ArticleCASGoogle Scholar
  22. K.D. Kreuer, J. Membr. Sci. 185, 2001, 29–39 ArticleCASGoogle Scholar
  23. B. Ruffmann, B. Rohland, Chem. Ing. Tech. 2005, 539–548 Google Scholar
  24. M. Yoshizawa, H. Ohno, Anhydrous proton transport system based on zwitterionic liquid and HTFSI, Chem. Commun., 2004, 1828 Google Scholar
  25. Md.A.B. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun. 2003, 938–939 Google Scholar
  26. M. Doyle, S.K. Choi, G. Proulx, High-temperature proton conducting membrane based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc. 147(1), 2000, 34 ArticleCASGoogle Scholar
  27. M.-A. Neouze, J. Le Bideau, F. Leroux, A. Vioux, A route to heat resistant solid membranes with performances of liquid electrolytes, Chem. Commun., 2005, 1082–1084 Google Scholar
  28. Z. Li, H. Liu, A. Liu, P. He, J. Li, A room-temperature ionic-liquid-templated proton-conducting gelationous electrolyte, J. Phys. Chem. B 2004, 108, 17512–17518 ArticleCASGoogle Scholar
  29. C.A. Angell, W. Xu, J.-P. Belieres, M. Yoshizawa, Ionic liquids and ionic liquids acids with high temperature stability for fuel cell and other high temperature applications, methods of making and cell employling same, US Patent WO2004114445, 2004 Google Scholar
  30. D.J. Jones, J. Rozie`re In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 3, Part 1, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 447–455 Google Scholar
  31. B. Bonnet, D.J. Jones, J. Rozie`re, L. Tichicaya, G. Alberti, M. Casciola, L. Masinelli, B. Bauer, A. Peraio, E. Ramunni, J. New Mater. Electrochem. Syst. 3, 2000, 87 CASGoogle Scholar
  32. F. Bauer, M. Willert-Porada, J. Power Sources 145, 2005, 101–107 ArticleCASGoogle Scholar
  33. G. Alberti, M. casciola, M. Pica, G. Di Cesare, Ann. N.Y. Acad. Sci 984, 2003, 208–225 ArticleCASGoogle Scholar
  34. I. Honma, Y. Takeda, J.M. Bae, Solid State Ionics 120, 1999, 255–264 ArticleCASGoogle Scholar
  35. Y.S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci. 212, 2003, 263 ArticleCASGoogle Scholar
  36. G. Alberti, M. Casciola, M. Pica, Guisi di Cesare, Ann. N Y Acad. Sci. 984, 2003, 2008 Google Scholar
  37. E. Peled, T. Duvdevani, A. Melman, Electrochem. Solid State Lett. 1(5), 1998, 210–211 ArticleCASGoogle Scholar
  38. E. Peled, V. Livshits, M. Rakhmann, A. Aharon, T. Duvdevani, M. Pholosoph, T. Feiglin, Electrochem. Solid State Lett. 7(12), 2004, 507–510 ArticleGoogle Scholar
  39. S. Liu, Q. Pu, L. Gao, C. Korzeniewsky, C. Matzke, Nano Lett. 5(7), 2005, 1389 ArticleCASGoogle Scholar
  40. C. Staudt-Bickel, Crosslinked Polymeric Membranes for the Separation of Gaseous and Liquid Mixtures, Soft Materials, Vol. 1, 3, 2003, 277 ArticleGoogle Scholar
  41. F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation, ChemPhysChem, 4(9), 2003, 967 ArticleGoogle Scholar
  42. J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, G. Zhao, Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation, Angew. Chem., 116, 2004, S1421–S1423 ArticleGoogle Scholar
  43. M. Doyle, S.K. Choi, G. Proulx, J. Electrochem Soc. 147, 2000, 34–37 ArticleCASGoogle Scholar
  44. Electrochemical Aspects of Ionic Liquids, H. Ohno, Ed., Wiley, 2005 Google Scholar
  45. M. Yoshizawa*, Wu. Xu, C.A. Angell, J. Am. Chem. Soc., 125, 2003, 13411–15419 Google Scholar
  46. A.P. Abbott,* G. Capper, D.L. Davies, R.K. Rasheed and V. Tambyrajah, Chem. Commun., 2003, 70–71 Google Scholar
  47. A.P. Abbott, G. Capper, D.L. Davies,* H.L. Munro, R.K. Rasheed and V. Tambyrajah, Chem. Commun., 2001, 2010–2011 Google Scholar
  48. T. Höfener, M. Solinas, W. Leitner, Hydrogen solubility in the system ionic liquid/CO2/H2, First Congress on Ionic Liquids, Salzburg, 2005 Google Scholar
  49. S.N.V.K. Aki, D.G. Hert, J.L. Anderson, J.F. Brennecke, Pure and mixed gas solubilities CO2/IL mixtures, First Congress on Ionic Liquids, Salzburg, 2005 Google Scholar
  50. J. Kerr, X.-G. Sun, G. Liu, J. Xie, C. Reeder, New polymeric proton conductors for high temperature applications, DOE Workshop, 2004 Google Scholar
  51. A.P. Abbott, ChemPhysChem 2004, 5, 1242 ArticleCASGoogle Scholar
  52. G. Tsagaropoulos, A. Eisenberg, Macromolecules, 28, 1995, 6067 ArticleCASGoogle Scholar
  53. G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Texeira, J. Dupont, On the use of imi-dazolium ionic liquids for the formation and stabilization of Ir(0) and Rh(0) nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem. Eur. J., 9 (14), 2003, 3263–3269 ArticleCASGoogle Scholar
  54. C.W. Scheeren, G. Machado, J. Dupont, P.F.P. Fichtner, S.R. Texeira, Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometal-lic precursor, characterization and catalytic properties in hydrogenation reactions, Inorg. Chem., 42(15), 2003, 4738–4742 ArticleCASGoogle Scholar
  55. M.A. Néouze, J. Le Bideau, A. Vioux, Versatile heat resistant solid electrolytes with performances of liquid electrolytes, Prog. Solid State Chem., 2–4, 2005, 217–222 ArticleGoogle Scholar
  56. P. Devlin, P. Devlin (US DoE), Collaborative Fuel Cell R&D, Second Implementation Liaison Committee Meeting, Gunzburg, Germany, March 1–3, 2004 Google Scholar
  57. D.D. Macdonald et al., Materials for high temperature PEM Fuel Cells, Workshop at Energy Institute, Pennsylvania State University, 2003 Google Scholar
  58. H.A. Gasteiger, M.F. Mathias, Materials for high temperature PEM Fuel Cells, Workshop at Energy Institute, Pennsylvania State University, 2003 Google Scholar
  59. T.L. Reitz, Project report AFLR-PR-WP-TR-2004–2130, US Air Force, November 2004 Google Scholar
  60. J.J. Xu, Project report 03-19, California Energy Commission, 2003 Google Scholar
  61. P. Bogdanoff, M. Hilgendorff, H. Schulenburg, M. Fieber-Erdmann, I. Dorbandt, H. Trib-utsch, S. Fiechter, In: Technical Session: Fuel Cell Systems of the World Renewable Energy Congress VII: Proceedings (7, 2002, Köln) D. Stolten [u.a.] Eds. Jülich: Forschungszentrum Jülich GmbH, 2003 (Schriften des Forschungszentrums Jülich – Reihe Energietechnik; 26), pp. 129–132 Google Scholar
  62. P. Stonehart, Ber. Bunsenges. Phys. Chem. 94, 1990, 913–921 ArticleCASGoogle Scholar
  63. M. Uchida, Y. Fukuoka, Y. Sudawara, N. Eda, A. Otah, A. Otah, J. Electrochem. Soc. 143, 1996, 245 Google Scholar
  64. DaimlerChrysler/Stäb/, Bönnemann MPI, Stolten FZJ, Wokaun, PSI, 3M. Umicore (USA, Japan? Fa. Tanaka Kikinzoku in Schweizer Arbeit und Grove) Google Scholar
  65. K.-Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem. 14, 2004, 505 (review) ArticleCASGoogle Scholar
  66. N. Fink, Untersuchung zur Kinetik der methanol-oxidation unter DMFC-Bedingungen, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2005 Google Scholar
  67. N. Fink, M. Lopez, U. König, GDCh Monographien 23, 2002, 367 Google Scholar
  68. E. Antolini, J. Mater. Sci. 38, 2003, 2995 ArticleCASGoogle Scholar
  69. J. Schoonman, Solid State Ionics 157, 2003, 319 ArticleCASGoogle Scholar
  70. U.A. Paulus, A. Wokaun, G.G. Scherrer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J. Phys. Chem. B, 106, 2002, 4181–4191 ArticleCASGoogle Scholar
  71. U. Stimming, H.F. Oetjen, V.M. Schmidt, F. Trila, J. Electrochem Soc. 143, 1996, 3838 ArticleGoogle Scholar
  72. T.A. Zawodzinski, C. Karuppaiah, F. Uribe, S. Gottesfeld, Proc. Electrochem. Soc. 97, 1997, 139 Google Scholar
  73. H. Bönnemann, R. Brinkmann, P. Britz, J. New Mater. Electrochem. Syst. 3, 2000, 199–206 Google Scholar
  74. A. Lee, K. Park, J. Choi, B. Kwon, Y. Sung, J. Electrochem. Soc. 149(10), 2002, A1299– A1304 ArticleCASGoogle Scholar
  75. M.L. Anderson, R.M. Stroud, D. Rolison, Nano Lett. 2(3), 2002, 235–240 ArticleCASGoogle Scholar
  76. K. Vinodgopal, M. Haria, D. Meisel, P. Kamat, Nano Lett. 4(3), 2004, 415–418 ArticleCASGoogle Scholar
  77. M. Chojak, M. Mascetti, R. Wlodarcyk, R. Marassi, K. Karnicka, K. Mieznikowski, P.J. Kulesza, J. Solid State Electrochem. 8, 2004, 854–860 ArticleCASGoogle Scholar
  78. H.R. Kunz, G.A. Gruver, J. Electrochem. Soc. 122, 1975, 1279 ArticleCASGoogle Scholar
  79. M.T. Reetz, Chimia 58, 2004, 896 ArticleCASGoogle Scholar
  80. V. Rao, P.A. Simonov, E.R. Savinova, G.V. Plaksin, S.V. Cherpanova, G.N. Kryukova, U. Stimming, J. Power Sources 145, 2005, 178–187 ArticleCASGoogle Scholar
  81. P. Kim, H. Kim, J.B. Joo, W. Kim, I.K. Song, J. Yi, J. Power Sources 145, 2005, 139–146 ArticleCASGoogle Scholar
  82. M.K. Debe, Handbook of Fuel Cells — Fundamentals and Applications, Vol. 3: Fuel Cell Technology and Applications, W. Vielstich, H.A. Gasteiger, A. Lamm, Ed., 2003, Wiley, pp. 576–589 Google Scholar
  83. J.-H. Choi, K.-W. Park, H.-K. Lee, Y.-M. Kim, J.-S. Lee, Y.-E. Sung, Electrochim. Acta 48, 2003, 2781 ArticleCASGoogle Scholar
  84. Quintus, M, Composite Electrodes and Membranes for Polymer Electrolyte Membrane Fuel Cells, PhD Thesis, University of Stuttgart, 2002, urn:nbn:de:bsz:93-opus-12074 Google Scholar
  85. A. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 1997, 377 ArticleCASGoogle Scholar
  86. A. Chambers, C. Park, R.T.K. Baker, N.M. Rodriguez, J. Phys. Chem 102, 1998, 4253 CASGoogle Scholar
  87. P. Chen, X. Wu, J. Lin, K.L. Tan, Science 285, 1999, 91 ArticleCASGoogle Scholar
  88. K.P. de Jong, J.W. Geus, Catal. Rev. Sci. Eng. 42, 2000, 481 ArticleGoogle Scholar
  89. A.C. Dillon, M.J. Heben, Appl. Phys. A 72, 2001, 133 ArticleCASGoogle Scholar
  90. Z. Dehouche, L. Lafi, N. Grimard, J. Goyette, R. Chahine, Nanotechnology 16, 2005, 402 ArticleCASGoogle Scholar
  91. W.B. Kim, T. Voitl, G.J. Rodriguez-Rivera, J.A. Dumesic, Science 305, 2004, 1280 ArticleCASGoogle Scholar
  92. M. Valden, X. Lai, D.W. Goodman, Science 281, 1998, 1647 ArticleCASGoogle Scholar
  93. M.-S. Löffler, B. Groß, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Phys. Chem. Chem. Phys. 3, 2001, 333 ArticleGoogle Scholar
  94. M.-S. Löffler, B. Groß, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Scripta Mater., 44, 2001, 2253 ArticleGoogle Scholar
  95. M.-S. Löffler, H. Natter, R. Hempelmann, K. Wippermann, Electrochim. Acta 48, 2003, 3047 ArticleGoogle Scholar
  96. M. Uchida, Y. Fukuoka, Y. Suawara, H. Ohara, A. Ohta, J. Electrochem. Soc. 145(11), 1998, 3708–3713 ArticleCASGoogle Scholar
  97. A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: a review, Int. J. Hydrogen Energy 30, 2005, 1297 ArticleCASGoogle Scholar
  98. R. Mallant, F. Koene, C. Verhoeve, A. Ruiter, Proc. Fuel Cell Seminar, 1994 Google Scholar
  99. O. Rau, Dissertation, University Duisburg, Duisburg, Germany, 1999 Google Scholar
  100. D. Repenning, R. Späh, W. Kaiser, J. Wind, WO01/78175 Google Scholar
  101. J. Wind, A. LaCroix, S. Braeuininger, P. Hedrich, C. Heller, M. Schudy In: Handbook of Fuel Cells, Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H. Gasteiger, Eds., Wiley, 2003, pp. 294–307 Google Scholar
  102. A. Heinzel, F. Mahlendorf, O. Niemzig, C. Kreuz, J. Power Sources 131, 2004, 35–40 ArticleCASGoogle Scholar
  103. T. Derieth, G. Bandlamundi, P. Beckhaus, A. Heinzel, C. Kreuz, F. Mahlendorf, J. New Mater. Electrochem. Syst., 2008, 21–29 Google Scholar
  104. R. Carlin, K. Swider-Lyons, The AMPTIAC Newsletter, 6(1), Spring 2002 Google Scholar
  105. K.E. Swider-Lyons, K.M. Bussmann, D.L. Griscom, C.T. Love, D.R. Rolison, W. Dmowski, T. Egami, In: Solid State Ionic Devices II — Ceramic Sensors, E.D. Wachsman, et al., Eds., Electrochemical Society Proceedings 2000-32, 2000, 48 Google Scholar
  106. Bernhard Heinrich ANDREAUS, Die Polymer — Elektrolyt Brennstoffzelle — Charakter-isierung ausgewählter Phänomene durch elektrochemische Impedanzspektroskopie, PhD-Thesis, Ecole Polytechnique Fédéral Lausanne, 2002 Google Scholar
  107. U. König, B. Davepon, Microstructure of polycrystalline Ti and its microelectrochemical properties by means of electron-backscattering-diffraction, Electrochim. Acta 47, 2001, 149 ArticleGoogle Scholar
  108. B. Davepon, J.W. Schultze, U. König, C. Rosenkranz, Crystallographic orientation of single grains of polycristalline Ti and their influence on electrochemical processes, Surf. Coat. Technol. 169–170, 2003, 85 ArticleGoogle Scholar
  109. C. Fricke, U. König, J.W. Schultze, Untersuchung instationärer Prozesse der O2-Reduktion an Platin, GDCh-Monographie 12, 1997, 163 Google Scholar
  110. A.A. El-Shafei, R. Hoyer, L.A. Kibler, D.M. Kolb, Methanol oxidation on Ru-modified preferentially oriented Pt electrodes in acidic medium, J. Electrochem. Soc. 151(6), 2004, F141 ArticleCASGoogle Scholar
  111. P.N. Ross, Jr., Oxygen reduction reaction on smooth single crystal electrodes, In: Handbook of Fuel Cells — Fundamentals, Technology and Applications, Vol. 2, Part 5 (The Oxygen Reduction/Evolution Reaction), W. Vielstich, A. Lamm, and H.A. Gasteiger, Eds., Chichester, UK, Wiley, 2003, pp. 465–480 Google Scholar
  112. T. Hamelmann, A. Moehring, M. Pilaski, M.M. Lohrengel, Impedance spectroscopy, in micro systems. In: P.L Bonora, Ed., Fifth Int. Symp. on Electrochem. Impedance Spectroscopy, Marilleva, Italy, 2001, pp. 55–56 Google Scholar
  113. K. Eckhard, O. Schlüter, V. Hagen, B. Wehner, T. Erichsen, W. Schuhmann and M. Muhler, Appl. Catal. A: Gen. Catal., 281, 2005, 115–120 ArticleCASGoogle Scholar
  114. C. Liang, W. Xia, H. Soltani-Ahmadi, O. Schlüter, R.A. Fischer and M. Muhler, Chem. Commun., 2005, 282–284 Google Scholar
  115. D. Kramer, E. Lehmann, G. Frei, P. Vontobel, A. Wokaun, G.G. Scherer, Nuclear Instrum. Methods Phys. Res. A 542, 2005, 52–60 ArticleCASGoogle Scholar
  116. N. Kardjilov, S.W. Lee, E. Lehmann, I.C. Lim, C.M. Sim, P. Vontobel, Nuclear Instrum. Methods Phys. Res. A 542, 2005, 100–105 ArticleCASGoogle Scholar
  117. A. Panchenko, H. Dilger, E. Möller, T. Sixt, and E. Roduner, J. Power Sources, 127, 2004, 325–330 ArticleCASGoogle Scholar
  118. A.E. Curtright, P.J. Bouwman, R.C. Wartena, K.E. Swider-Lyons, Power sources for nan-otechnology, Int. J. Nanotechnol., 1(1–2), 2004 Google Scholar
  119. S. Won Cha, R. O'Hayre, F.B. Prinz, Solid State Ionics 175, 2004, 789–795 ArticleGoogle Scholar
  120. S.J. Lee*, A. Chang-Chien, S.W. Cha, R. O'Hayre, Y.I. Park, Y. Saito, F.B. Prinz, J. Power Sources 112, 2002, 410–418 ArticleCASGoogle Scholar
  121. J.D. Holladay, E.O. Jones, M. Phelps, J. Hu, J. Power Sources 108, 2002, 21–27 ArticleCASGoogle Scholar
  122. P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Science 285, 1999, 83 ArticleCASGoogle Scholar
  123. E.R. Choban, J.S. Spendelow, L. Gancs, A. Wieckowski, P.J.A. Kenis, Electrochim. Acta 50(27), 2005, 5390 ArticleCASGoogle Scholar
  124. N. Mano, F. Mao, A. Heller, A miniature biofuel cell operating in a physiological buffer, J. Am. Chem. Soc. 124(44), 2002, 12962 ArticleCASGoogle Scholar

Author information

Authors and Affiliations

  1. Fachgebiet Energietechnik, Universität Duisburg, Lotharstr. 1-21, 47057, Duisburg, Germany Angelika Heinzel
  2. Centre for Fuel cell Technology (ZBT gGmbH), Carl-Benz-Str. 201, Duisburg, 47057, Germany Uwe König
  1. Angelika Heinzel